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Biochemical Studies on the Metabolic
Activation of Halogenated Alkanes
by Kevin H. Cheeseman,* Emanuele F. Albano,t
Aldo Tomasi,* and Trevor F. Slater*

This paper reviews recent investigations by Slater and colleagues into the metabolic activation of hal-
ogenated alkanes in general and carbon tetrachloride in particular. It is becoming increasingly accepted
that free radical intermediates are involved in the toxicity of many such compounds through mechanisms
including lipid peroxidation, covalent binding, and cofactor depletion. Here we describe the experimental
approaches that are used to establish that halogenated alkanes are metabolized in animal tissues to reactive
free radicals. Electron spin resonance spectroscopy is used to identify free-radical products, often using
spin-trapping compounds. The generation of specific free radicals by radiolytic methods is useful in the
determination of the precise reactivity of radical intermediates postulated to be injurious to the cell. The
enzymic mechanism of the production of such free radicals and their subsequent reactions with biological
molecules is studied with specific metabolic inhibitors and free-radical scavengers. These combined tech-
niques provide considerable insight into the process of metabolic activation of halogenated compounds.
It is readily apparent, for instance, that the local oxygen concentration at the site of activation is of
crucial importance to the subsequent reactions; the formation of peroxy radical derivatives from the
primary free-radical product is shown to be of great significance in relation to carbon tetrachloride and
may be of general importance. However, while these studies have provided much information on the
biochemical mechanisms of halogenated alkane toxicity, it is clear that many problems remain to be
solved.

Introduction
The purpose of this paper is to review the investi-

gations carried out by this group (principally at Brunel
University) over recent years into the role of free rad-
icals in the toxicity of halogenated alkanes. Carbon tet-
rachloride (CC14) is the prime example of an hepatotoxic
haloalkane, and the biochemical mechanisms of its toxic
effects have been intensively investigated over many
years. While CC14 is no longer a clinically important
hepatotoxin, it still has immense value as an experi-
mental model agent. The methodology developed for the
study of CC14 activation is now finding extensive appli-
cation in the study of the toxicity of other haloalkanes
and many other xenobiotics. That situation is reflected
in this paper where it will be evident that although our
principal experience has been in using CC14 we have a
growing interest in other toxic haloalkanes. Our pre-
sentation can be broadly divided into three main sec-
tions: the demonstration of the formation of free radical
metabolites from haloalkanes, the measurement of the
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reactivity of such radicals, and the study of the enzy-
matic mechanisms of haloalkane activation. While such
a division is somewhat arbitrary, it is a convenient basis
for the following review.

Studies on the Pathways of CC14
Metabolism: A Synopsis
Although the main histopathological features of CC14-

induced liver injury had been fully described by 1936
(1), the biochemical mechanisms by which CC14 exerts
its hepatotoxic actions were not investigated in detail
until the 1960s, and have not been fully clarified to the
present day. Prior to the 1960s the predominant view
was that CC14 might act on the liver by a simple solvent
action; early studies on the hepatoxicity of CC14 are fully
reviewed by Recknagel (2). It is now a fundamental
tenet that CC14 has to undergo metabolic activation in
order to exert its full range of toxic effects.

In 1966, two papers appeared, virtually simultane-
ously, presenting similar theories for the mechanism of
the hepatotoxicity of CC14 (3,4). Each proposed that the
mechanism depended on the metabolism of CC14 to a
free-radical product capable of initiating lipid peroxi-
dation. Emphasis was placed on the importance of lipid
peroxidation as a damaging reaction of potentially great
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significance in cytotoxicity. Slater postulated that the
free-radical product was the trichloromethyl free radical
(CC13 ) and that it was formed by interaction with en-
dogenous radicals, perhaps involved in an enzymic pro-
cess in the endoplasmic reticulum. In putting forward
their proposals, Slater and Recknagel had to show why
a theory based on the metabolic activation of CC14 ac-
counted for those characteristic features of CC14 hepa-
totoxicity that could not be explained by the simple
lipid-solvent hypothesis. The principal features of the
concept ofmetabolic activation had previously been pro-
posed by Miller and Miller (5) for chemical carcinogens,
but the application of the concept to CC14 required a
new insight into experimental data that had already
been published. Those data included the following major
contributions:

In 1951, McCollister et al. (6) had demonstrated that
CC14 is metabolized in vivo to products including chlo-
roform, C02, and urea. Butler (7), in perhaps the most
provocative of these early papers, confirmed CC14 me-
tabolism in vivo and proposed that CC14 toxicity de-
pended on the homolytic fission of the C-Cl bond to
radical products. Reynolds (8) reported that radiola-
beled CC14 administered to rats became covalently
bound to liver protein. Rubinstein and colleagues (9,10)
demonstrated the role of the endoplasmic reticulum in
the metabolism of CC14 to CHC13 and C02 in vitro.
Wirtschafter and Cronyn (11) proposed that CC14 was
converted to a radical form by interaction with endog-
enous free radicals. It was shown that CC14 stimulated
lipid peroxidation in liver homogenates (12) and in mi-
crosomes plus cytosol (13); both of these groups rec-
ognized that the cytosolic fraction was required.
The proponents of the activation theory for CC14(3,4)

drew these threads together and added more experi-
mental evidence in support of their proposals. Slater
suggested that the relative toxicity of the halogenated
methanes depended on their respective bond dissocia-
tion energies that would dictate the ease of homolytic
free-radical formation; this, for instance, would explain
the high toxicity of CBrCl3 in which the C-Br bond is
weaker than a C-Cl bond in CC14.
The activation theory was strengthened and essen-

tially completed by papers appearing shortly thereafter.
McLean and McLean (14) established the role of the
microsomal drug-metabolizing enzymes in determining
the toxicity of CC14 and proposed that these enzymes
were involved in the metabolism of CC14. Gregory (15)
proposed that activation of CC14 proceeded by a mech-
anism of electron capture, rather than homolysis and
this scheme, in which Cl radicals are not produced, is
generally accepted:

CC14e CC13 + Cl-

Slater (16) demonstrated that CC14-dependent micro-
somal lipid peroxidation required a source of NADPH.
Fowler (17) reported hexachloroethane (C2C16) as a me-
tabolite of CC14 in vivo, a result consistent with the
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FIGURE. 1. Pathways of metabolism of CC14. Following activation to
CCl3, subsequent steps are highly dependent on the local oxygen
concentration. Steps marked (a) show hydrogen abstraction; ifRH
is a polyunsaturated fatty acid then lipid peroxidation may ensue.
Steps marked (b) show covalent binding to biomolecules (repre-
sented by X). *Steps marked (c) show radical dimerization; in the
case of CC1302 this is speculative for the biological situation (113).
Step (d) shows formation of electrophilic chlorine (represented as
"Cl ") as demonstrated by Pohl et al. (23,24). Step (f) is an an-
aerobic pathway via a carbene intermediate and is probably of
minor significance (29,30).

formation and dimerization of CC3l' radicals. The basis
for the activation theory was thereby established.

Since then the metabolism of CC14 has been investi-
gated intensively. The metabolites of this simple com-
pound are manifold, and the pathways by which they
arise are not yet fully understood. This situation is un-
doubtedly due to the initial product of CC14 activation
being a relatively reactive free radical. The subsequent
reactions of this intermediate can be conveniently di-
vided into aerobic and anaerobic pathways (see Fig. 1).

Aerobic Metabolism
The aerobic pathway of CC14 metabolism terminates

in C02, a product that was first detected by McCollister
et al. (6). Seawright and McLean (18) studied the me-
tabolism of CC14 to C02 in rat liver microsomes and
showed that it required NADPH and was blocked by
the P-450 inhibitor SKF 525A and the radical scavenger
promethazine. It seemed likely that phosgene (COC12)
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was the precursor of CC14-derived CO2. More recently,
Shah et al. (19) demonstrated that CC14 is metabolized
to COC12 by rat liver homogenate. Kubic and Anders
(20) showed that this was a microsomal process and that
the oxygen atom was derived from molecular oxygen,
which they took to indicate the involvement of a P-450-
catalyzed oxygenase reaction. Using a model heme sys-
tem of CC14 metabolism, Mansuy (21) considered that
COC12 could arise from interaction of 02 and a P-450-
carbene or P-450-carbanion complex, or simply by the
reaction of 02 with free CC13'. In fact, 02 reacts ex-
tremely rapidly with CC13 to yield the trichlorome-
thylperoxy free radical (CC1302) as discussed later, and
it is thus unnecessary to postulate P-450-mediated ox-
ygenation in the usual sense. The rapid reaction of CC13
with 02 was measured in this department by Packer
and it was suggested at that time that COC12 and C02
might arise via the formation ofthe CC1302' radical (22).
This hypothesis has latterly been taken up by Pohl and
colleagues, who have further studied the aerobic me-
tabolism of CC14 through to COC12 and have reported
another product, namely "electrophilic chlorine" (23,24).
This currently unidentified product can be considered
analogous to C1 and may represent a further potentially
toxic metabolite of CC14.
However, the significance of COC12 formation in CC14

hepatoxicity is not yet clear. In comparison with CHC13,
CC14 produces relatively small amounts of COC12. In
vivo, CHC13 administration reduces hepatic GSH con-
siderably but CC14 administration reduces hepatic GSH
only slightly, if at all (25,26). Accordingly, digluta-
thionyl dithiocarbonate, the product of the reaction of
COC12 and GSH, is found in the bile of CHCl3-treated
rats at 25 times the level of that found in CCl4-treated
rats and its formation by microsomes in vitro with these
two substrates is in the same proportion (26). These
relatively large differences in the production of COC12
in livers exposed to CHC13 or CC14 should be contrasted
with the much higher hepatotoxic activity of CC14 com-
pared with CHC13. These routes of CC14 metabolism are
shown in Figure 1. The tetroxide intermediate shown
in Figure 1 is hypothetical, and it is not clear if dimer-
ization of CC1302 radicals is likely under physiological
conditions. Similarly, the alkoxy radical derivative
(CC130 ) seems a likely intermediate but has not yet
been demonstrated.

Anaerobic Metabolism
It has been clearly established (27) that CC14 is met-

abolically activated under anaerobic conditions to give
a much higher yield of covalently bound product than
is found under corresponding aerobic conditions. This
aspect of the metabolism of CC14 is discussed in detail
later. Wolf et al. (28) showed that under anaerobic con-
ditions a small amount of CO is produced from CC14 by
liver microsomes, and they postulated that the precur-
sor of this was the dichlorocarbene-P-450 ligand, itself
the product of a carbanion intermediate (see Fig. 1). In
this case the oxygen atom of CO comes from a water

molecule. The significance of carbene formation was fur-
ther investigated by Ahr et al. (29) who concluded that
the products of anaerobic metabolism (other than CO)
were principally derived from CC13 and that the car-
bene intermediates were probably of little physiological
significance. Kubic and Anders (30) showed that CHC13
formation was normally due to hydrogen abstraction by
CC13' rather than protonation of the carbanion inter-
mediate, as judged by incubating liver microsomes in
D20 and measuring CDC13 formation. The latter route,
however, appeared to be of more significance in phen-
obarbitone-treated rats.

It is clear that CC14 metabolism can proceed through
aerobic and anaerobic routes and that the key initial
step is the production ofthe CC13' free radical. It follows
that the next major controlling factor is the local oxygen
concentration that will determine the relative flux
through each pathway. Thus, under anaerobic condi-
tions covalent binding and CHC13 production are fa-
vored; under aerobic conditions these will be reduced
in favor of COC12 and C02 production. In normal aerobic
microsomal incubations products of both pathways are
found; probably the local 02 concentration of the mi-
croenvironment of the site of activation is critical in
determining certain features of the injurious reactions
produced by CC14.

Demonstration of the Formation of
CC13- from CC14
By the early 1970s it had become generally accepted

that CC14 undergoes a metabolic activation in the en-
doplasmic reticulum. However, there was no direct evi-
dence for the formation of the CC13 radical that was
postulated to be the primary metabolite. Indirect evi-
dence for its formation had been obtained; however, the
formation of C2016 as a product of CC14 metabolism (1 7)
is most probably due to the dimerization of CC13' rad-
icals. Moreover, double-label radioisotope experiments
measuring covalent binding of [14C]- and [ 6Cl]-CC14
were consistent with the binding of the CC13' radical
(31,32).
The method of choice for the detection of free-radical

species is electron spin resonance (ESR) spectroscopy.
However, attempts to detect the CC13' free radical in
whole liver or in liver fractions exposed to CC14 using
direct ESR analysis were not successful (33-36). This
is most probably due to the low steady-state concen-
tration of this radical species in biological systems: its
rate of fornation may be rather low and its chemical
reactivity is relatively high (37). The steady-state con-
centration of CC13' is therefore probably below the de-
tection limit of ESR spectroscopy (ca. 106 M). For this
reason, the technique of spin trapping (38) has been used
to demonstrate unequivocally the formation of the CC13
radical. This technique utilizes a spin trap that does not
by itself give rise to an ESR signal, but which reacts
with a free radical to yield a relatively stable free-radical
adduct that progressively accumulates to concentra-
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tions readily detectable by ESR spectroscopy. Spin
traps generally possess either a nitrone or a nitroso
functional group and forn nitroxyl radical adducts. The
spin traps that have been most commonly used in bio-
logical systems in the period 1975-1982 are 2-methyl-
2-nitrosopropane (MNP), phenyl-N-tert-butyl nitrone
(PBN), 4-pyridyl-N-oxide-tert-butyl nitrone (POBN),
and 5,5-dimethylpyrroline-N-oxide (DMPO); these are
shown in Figure 2. Perhaps the most difficult aspect of
this technique is the correct assignment of the nitroxide
radical spectrum to the original radical species. The
features of the spectrum used for this are the g values
and the hyperfine splitting constants. The ESR spec-
trum of most nitroxyl spin adducts is dominated by the
triplet splitting due to the nitrogen nucleus and, in the
case of the nitrone compounds, by the supplementary
splitting of the hydrogen atom attached in the beta po-
sition relative to the nitroxyl group. In the common case
of PBN trapping a carbon-centered free radical, the
adduct is forned in the beta position, and no signifi-
cantly different spectral features are evident. Thus,
various carbon-centered radicals trapped by, for ex-
ample, PBN, will give rise to largely similar spectra
with relatively minor differences in splitting constants
and g values, and the unambiguous assignment of an
ESR spectrum to a certain free radical is rather difficult.
This problem can be eased in some cases by the use of
13C-labeled substrates (34). If a nitroxide radical adduct
is formed from a 13C-centered free radical, the 13C nu-
cleus will influence the ESR spectrum and aid the une-
quivocal assignment of the spectrum. For example, if
the 12C-species gives a single-line spectrum, then the
"3C-analog will give a doublet; a mixture of the 12-C and
the 13C spin-trap adducts will thus produce a "triplet"
where the strengths of the singlet versus the doublet
will reflect the relative proportions of 12C:13C (34).
The spin-trapping technique has been applied by our

group to demonstrate the production of free-radical in-
termediates during the metabolism of various xeno-
biotics.

Spin Trapping of Free Radicals
Derived from CC14
The first attempts by this group to trap the CC13

radical were not completely successful (37). In that
study, CC14 was added to NADPH-supplemented mi-
crosomal suspensions containing the nitroso spin-trap
MNP (Fig. 2). Although a nitroxide radical adduct was
detected only when CC14 (or CBrCI3) was present, and
not with CHC13, it was evidently not derived directly
from CC13 and it was suggested that the species
trapped was either CC1302' or a secondary lipid peroxy
radical.

In 1980, this group (39) and that of McCay (40) suc-
ceeded in trapping CC13 with the nitrone spin trap
PBN. The CC13-PBN spin adduct was found by both
groups in rat liver microsomes incubated with CC14 and
in the livers of rats dosed with CC14 and PBN in vivo.
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FIGURE 2. Spin adduct formation. The three most commonly used
spin-trapping agents: MNP (top), PBN (middle) and DMPO (bot-
tom). MNP adds free radicals in an alpha position to the nitroxide,
while POBN and DMPO form the spin adduct beta to the nitroxide
after addition to the C = N double bond. In the latter two cases,
the ESR spectrum gives less information about the molecular
structure.

Tomasi et al. (39) also detected this product in isolated
rat hepatocytes incubated with CC14.
The results were exciting and unambiguous: no ESR

signal was obtained from hepatocytes or microsomes in
the absence of CC14, a strong signal was obtained when
CC14 was added and a clear supplementary splitting was
apparent when 13C-CC14 was used (Fig. 3). Successive
papers by this group (41,42) further characterized var-
ious systems used for generating and trapping radicals
from CC14. Physical techniques for free radical gener-
ation, such as UV- and -y-irradiation and pulse radiolysis
were used in parallel to the biological systems in order
to clarify the situation.

Irradiation experiments (42) gave the answer to the
previously unexplained results (34) obtained usingMNP
in liver microsome suspensions. A mixture ofMNP and
CC14 was irradiated in the ESR spectrometer cavity
with a 400 W lamp fitted with a filter to restrict the
incident radiation to 300 to 360 nm, so avoiding the
direct photolysis of MNP. In this way the spectrum
shown in Figure 4 was obtained; this spectrum is char-
acteristic of the CC13-MNP adduct, the features being
due to the coupling of all three chlorine nuclei (see Table
1 for hyperfine splitting constants). The adduct is not
stable, however, and decomposes either to nonradical
products or, in the presence of oxygen, to a product
(Fig. 4b) that almost certainly can be assigned to the
CICO-MNP adduct. The route of formation of this prod-
uct is not clear, however. It seems therefore that the
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FIGURE 3. Example of a PBN spin adduct: (A) isolated rat hepa-
tocytes incubated with PBN for 30 min showing no nitroxide spec-
trum; (B) as (A) but in the presence of CC14; (C) as above except
using 3C-CC14; the extra splitting due to the presence of 13C
nucleus is evident.

radicals trapped in the original microsomal experiments
(34) were probably secondary lipid radicals arising from
CCl4-initiated lipid peroxidation.
PBN is clearly the superior spin trap for this partic-

ular task. Using irradiation techniques it was possible
to investigate the effect of oxygen and measure, using
competition methods (43) the rate constant for the re-
action between the spin trap PBN and the free radicals

Table 1. ESR parameters of the various radical adducts detected
by ESR spectrometry in the course of these investigations.

Hyperfine coupling constants, G
Radical Spin trap 14N 1H Other
CCI PBN 14 1.75 13C, 9.68
C1 PBN 12.2 0.7 35CI, 6.1
CC130l PBN 13.5 1.6
CC1l MNP 13.1 3CI 2.25
C0CO. MNP 6.75 13C, 5.7
CHC12 PBN 14.7 2.37 13C, 9.26
CF3CHC1' PBN 14.4 2.25
H2CBrCH2 PBN 14.5 2.15 13C, 9.2

FIGURE 4. Example of MNP spin adducts: (A) ESR spectrum ob-
tained after irradiating CC14 and MNP under hypoxic conditions.
The lines are due to the coupling of the chlorine atoms to the
nitroxide. (B) As above but in the presence of oxygen; the features
have been assigned to the CICO-MNP spin adduct.

CC13' and CC1302' formed in the absence and presence
of oxygen, respectively (39). Only CC1302 gave a meas-
urable rate constant with PBN (5.4 x 106 M-1sec'),
the reaction of CC13 being too slow for measurement
in the pulse radiolysis system (< 105 M-1sec'). This
result was not unexpected, as the parallel studies of
Packer, Willson and Slater in this department (see later)
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had demonstrated the enhanced reactivity of the oxy-
genated radical species.
The y-irradiation of CC14 at 77°K in the presence of

PBN and the absence of oxygen enabled both CC13' and
Cl formed by homolysis of CC14 to be trapped (42). In
the presence of oxygen and 13C-CCl4 the spectrum did
not show the characteristic hyperfine features expected
if the 13C nucleus was attached beta to the nitrogen of
PBN. The hyperfine splitting constants (Table 1) how-
ever, were slightly different from those of the CC13
adduct, and it was proposed (42) that the spectrum be
assigned to the CC1302-PBN adduct or, more likely, to
the CC130-PBN adduct resulting from molecular rear-
rangement of the CC1302-PBN species (44,45).
As expected, decreasing the concentration of oxygen

in the incubation system increases the amount of CC13
trapped by PBN, just as it increases the amount of
covalent binding of radiolabeled CC14 to protein and
lipid. In our hepatocyte system, hypoxic conditions
were obtained by blowing humidified oxygen-free ni-
trogen over the surface of the suspension for 10 min;
the remaining oxygen (ca. 50 ,uM) is rapidly consumed
in less than 5 min of incubation, such that complete
anoxia is obtained. Under these conditions, the intensity
of the signal due to the CC13-PBN adduct is increased
fivefold and covalent binding to cellular protein in-
creases in parallel (Fig. 5). This further underlines the
crucial role of the local oxygen concentration in deter-
mining the metabolic pathways subsequent to CC13' for-
mation. Spin-trapping experiments might give an in-
direct measurement of the relative importance of these
pathways, but there are intrinsic difficulties in using
this technique for quantitative measurements.

Spin Trapping of Radicals Derived
from Other Haloalkanes

Halothane
Halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) is

an anesthetic agent that produces rare and unpredictable
liver damage (46). It can be metabolized by both aerobic
and anaerobic pathways, but the latter route seems to
be more important as regards hepatotoxicity. The one-
electron reduction of halothane by the NADPH-cyto-
chrome P-450 system to a free-radical product has been
postulated, by analogy with the metabolic activation of
CC14 (46,47). The C-Br bond is the weakest in the hal-
othane molecule, and so the primary free radical product
is likely to be the 1,1,1-trifluorochloroethyl radical
(CF3C'HCI) following bromide elimination. This is borne
out by the finding that l,1,1-trifluoro-2-chloroethane is a
major metabolite of reductive halothane metabolism (47).
Moreover, Trudell and co-workers have detected the 1,1,1-
trifluoro-2-chloroethyl fragment bound to lipid following
reductive halothane metabolism in reconstituted systems
containing the enzymes of the NADPH-cytochrome P-
450 system (48,49).
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FIGURE 5. Covalent binding and spin trapping of CCl3. Parallel
increase in the covalent binding of CCl3 to protein and the spin
trapping of the same radical with PBN in isolated hepatocytes.
Hepatocytes (7.5 x 10' cells/mL) were incubated in the presence
of 0.15 mM "C-CCI4 for the covalent binding experiments and
with nonradioactive CCl4 and 25 mM PBN for the spin-trapping
experiments.

Using the experience gained from the aforementioned
studies with CC14, we attempted to trap free-radical
products of halothane metabolism in liver microsomes
and in isolated hepatocytes; PBN was again used as the
spin trap (50). When hepatocytes were isolated from
phenobarbital-induced male rats and incubated in the
presence of halothane and PBN under hypoxic condi-
tions an ESR signal could be readily detected. The sig-
nal consisted of a triplet of doublets having nitrogen and
hydrogen hyperfine splitting constants of 14.4 and 2.25
G, respectively (Table 1). Under aerobic conditions only
a small unresolved spectrum was evident. If cells from
noninduced male rats were used, no signal was found
under either normoxic or hypoxic conditions. Isolated
hepatocytes from phenobarbital-induced female rats
gave rise to a similar ESR spectrum (but of a signifi-
cantly lower intensity) when hypoxic conditions were
used. Using liver microsomes from phenobarbital-in-
duced male and female rats, the same ESR spectrum
was found, again only under anaerobic conditions and
once more higher in male-derived microsomes.

In all cases, the signal features were not sufficiently
characteristic to permit an unambiguous identification.
The spectrum seems unlikely, however, to be due to a
PBN-lipid radical adduct, as it differs significantly from
that reported by Kalynaraman et al. (51) for such a
species. For the time being, we must assume that, based
on the indirect evidence already mentioned, this spec-
trum is due to the trapping of the CF3C HCI radical.
These results differ from those of Poyer et al. (52), who
reported a similar spin adduct but who did not find
anaerobic conditions to be critical for its formation.
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FIGURE 6. Time course of halothane radical-PBN spin adduct for-
mation and LDH release. Hepatocytes were isolated from phen-
obarbital-induced rats and incubated anaerobically in the presence
of 2 mM halothane. PBN was omitted from suspensions used for
LDH assays; in the absence of halothane the leakage of LDH
amounted to 8 units/mL after 60 min. The viability of the cells
after 60 min incubation was 60% in the absence and 30% in the
presence of halothane (50).

The relative intensity of the ESR signal obtained in
liver preparations from male and female rats correlates
well with the higher susceptibility shown by male rats,
supporting the view that free radical intermediates
might be involved in halothane hepatotoxicity. Also sup-
portive ofthis postulate is the finding that radical adduct
formation correlates directly with loss of cell viability
in suspensions of isolated hepatocytes (Fig. 6). In the
same experiments, halothane was found to induce lipid
peroxidation in liver cells, albeit weakly, suggesting
that this process may follow on from free radical for-
mation and contribute towards cell damage. De Groot
and Noll (53) have recently described the crucial role of
oxygen concentration in halothane-induced lipid per-
oxidation.
These results do not, however, explain the rarity of

halothane hepatotoxicity, and it seems increasingly
likely that an immune response is involved, possibly
resulting from changes in antigenic identity brought
about by covalent binding of free radical internediates.

Dibromoethane
1,2-Dibromoethane (DBE) is a chemical that has been

used widely in industry and is still used as a fumigant
in agriculture. It is remarkably toxic, producing both
hepatic and renal damage, and is also carcinogenic (54).
This molecule came under our scrutiny since its struc-
ture suggested the possibility that free radical inter-

mediates might be produced during its metabolism. This
possibility was studied in isolated hepatocytes and in
liver microsomes (55,56).
Two main metabolic pathways have been reported:

one involves a conjugation to glutathione (GSH) me-
diated by GSH transferase and eventually resulting in
the formation of mercapturic acid derivatives, the other
is based on oxidative dehalogenation by the microsomal
drug metabolizing enzymes resulting in bromoacetal-
dehyde (57,58). The latter pathway is quantitatively the
more important but it appears that the genotoxic effect
is related to conjugation of DBE to GSH (59).

In our studies, incubation of DBE in suspensions of
isolated hepatocytes in the presence of PBN did not
give rise to any detectable spin adduct under normoxic
conditions. Ifthe oxygen tension was reduced, however,
a well-resolved ESR spectrum was recorded (55) (Table
1). The identification of the radical so trapped was fa-
cilitated by the use of 13C-labeled susbstrate. While this
identified the radical as being derived from DBE under
reductive conditions, there are still doubts about its
precise structure; possibilities are H2CBrH2C or
H3CHCBr, the latter deriving from the former by mo-
lecular rearrangement. The '3C-labeled DBE certainly
establishes that a radical intermediate is formed from
DBE by interaction with the P-450 system, and that
this has sufficient stability to be trapped by PBN. This
is somewhat unexpected since it is known that radicals
of the type Hal-CH2-C H2 quickly break down to yield
ethylenes.

This pathway to a radical intermediate may also be
important in vivo, since conditions of low oxygen tension
are also possible physiologically, especially in microen-
vironments of the liver (60). Spin trapping has thus
enabled the discovery of a novel metabolic pathway for
an important toxic compound. The contribution of this
intermediate to the toxicity and carcinogenicity ofDBE
remains to be established but must be considered in any
future investigations.

Chloroform
Chloroform (CHC13) is, as with all the trihalogenated

methanes, hepatotoxic in both experimental animals
and humans (61), although much less so than CC14;
CHC13 is also carcinogenic in mice and rats (62). It is
generally agreed that CHC13-induced liver damage is
dependent upon its oxidative metabolism by the
NADPH-cytochrome P-450 system to COCI2 which then
depletes cellular GSH and alkylates macromolecules.

In our experiments (63) with isolated hepatocytes, a
radical product could be trapped under both hypoxic
and normoxic conditions. The signal was some eightfold
larger, however, under reduced oxygen tension. The
use of 3C-CHC13 again enabled us to identify the radical
as being CHCl3-derived but it is not yet clear whether
the radical trapped is the trichloromethyl or dichloro-
methyl species. As the hyperfine features (see Table 1)
are different from those obtained using CCl4 as sub-
strate, the most likely candidate seemed to be CHCl2 .
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To prove this point, CDC13 was used since the higher
stability of the C-D bond may be expected to produce
a substantial isotope effect if cleavage of the C-H (or
C-D) bond is involved in radical formation, i.e., if the
radical species is CC13'. In fact, the use of CDC13 re-
sulted in only a 20% decrease in signal intensity, not
enough to rate as an isotope effect. No differences in
the hyperfine splitting constants were apparent. More-
over, if cells were incubated with CHBrCl2 an identical
ESR spectrum was obtained but at least eight times
more intense, reflecting the lower energy required to
break the C-Br bond. Taken together these results sug-
gest that the trapped radical product of CHC13 activa-
tion is CHC12' and that, as in the case of halothane
activation, the carbon-halogen bonds are preferentially
broken.

Spin Trapping: Concluding Remarks
Apart from the examples shown above, we have stud-

ied the reductive metabolism of a range of halogenated
methanes and ethanes to free radical intermediates in
isolated hepatocytes under hypoxic conditions (64).
Comparing the intensity of the ESR signal obtained
from several halomethanes the tendency to form a free
radical product appears to rank according to the number
of halogens present in the molecule, thus:

CC14 > CHC13 > CH2C12

The electronegativity of the halogen atoms also directly
influences the apparent ease of radical formation, for
example:

CHI3 > CHBr3 > CHBrC12 > CHC13

or

CBrC13> CC14> CFC13

In the latter series, where CC13' can be the common
free radical product, the relative signal intensity of the
PBN spin adducts is in good agreement with previous
results on the ability to induce microsomal lipid per-
oxidation (63) and the hepatotoxicity of these halome-
thanes (35).

In summary, spin trapping is a powerful technique of
great value to the identification of free radical inter-
mediates in the metabolic activation of haloalkanes and,
of course, other important xenobiotics. Some difficulties
occur, however, concerning the identification of radical
species so trapped and the quantitation of free radical
formation. The value of 13C-labeled and deuterated com-
pounds have both been illustrated in the examples dis-
cussed above and have helped in removing some such
difficulties. The use of HPLC techniques to purify spin
adducts and mass spectrometry to definitively identify
them will also be of great value in unravelling these
remaining problems (65,66).

Measurement of the Reactivity of
Radicals Derived from CC14
The general acceptance of the activation hypothesis

in relation to the hepatotoxicity of CC14 brought with
it the common assumption that the damaging effects on
the liver resulted from the high reactivity ofthe primary
free radical product, CC13'. However, until the mid-
1970s no data were available on the precise reactivity
of CC13 under conditions comparable to those in living
cells. The installation of a 4-MeV 200-nsec pulsed linear
accelerator in the Biochemistry Department at Brunel
University (67) led to the application of a new technique
to the study of free radical involvement in the toxicity
of CC14: pulse radiolysis.

Pulse radiolysis is a technique whereby a very short
burst of high energy radiation, e.g., from a linear ac-
celerator, is used to generate specific radical species in
solution. The reactions of these radicals with other mol-
ecules can be monitored in the microsecond time scale
by a variety of detection methods including spectro-
photometry and conductivity measurements. This tech-
nique is fully reviewed by Willson (68).

CC13 can be readily generated by dissociative elec-
tron capture in aqueous solutions containing excess
amounts of scavengers that neutralize other reactive
species (hydroxyl radicals, hydrogen atoms) formed
during the radiolysis of water. Typically, aqueous so-
lutions containing t-butanol or isopropanol and acetone
are used; in the former case the principal reactions are:

H20 -* OH (45%) + ea7q (45%) + H (10%)

OH + (CH3)3COH -- H2O + (CH3)2COHCH2

eaq+ CC14 -3 CC13 + C1-

By specifically generating CC13' in this way, the re-
actions of CCl4-derived radicals with various compounds
of biological interest have been studied and the rate
constants have been accurately measured.

In 1975, the results of the first of such investigations
were published and they suggested that CC13' was suf-
ficiently electrophilic to react rapidly with various com-
pounds including tryptophan, promethazine, and phenol
(69). However, the authors pointed out that the solu-
tions used were not rigorously deaerated and that the
observed oxidations might therefore be due not to CC13
but to its oxygenated form, the trichloromethylperoxy
radical CC1302'. Subsequent investigations validated
this point.
The measurements of reactivity with tryptophan, ty-

rosine, phenol, and promethazine were repeated but
with stringent control of the oxygen concentration (22).
In aerated solutions strong transient absorption spec-
tra, similar to those first recorded, were observed in all
cases. In deaerated solutions the absorptions were ab-
sent but re-introduction of air resulted in their reap-
pearance. These observations showed that the CC13'
radical was not as reactive as had been previously
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thought except that it reacted extremely rapidly with
oxygen (>109 M-'sec-1). Moreover, the resultant
CCl302' radical was a very much more reactive species.
In that paper, it was also suggested that this reaction
might be the first step in the aerobic pathway of CCI4
metabolism proceeding via phosgene to CO2. It was also
noted that this reaction explained the elevated level of
covalent binding ofCCl4 metabolites in liver microsomes
incubated anaerobically.
Subsequent investigations in this area were often car-

ried out in close collaboration with Asmus and col-
leagues at the Hahn-Meitner Institute in Berlin. In fact,
that group deterrnined the precise rate constant for the
reaction of CC13' and oxygen to be 3.3 x 109M-1sec7l,
confirming that the reaction is practically diffusion-con-
trolled (70).
Following the discovery of the high reactivity of

CC1302' in 1978, Packer, Willson, Slater and colleagues
in Brunel University and Berlin investigated more

deeply the reactions of this and related peroxy radicals
with biologically important compounds. The CC1302
radical was found to react extremely rapidly (k = 5 x 10"
M-1 sec-1) with the biological antioxidant and vitamin,
a-tocopherol (71). Similarly rapid reactions were also
discovered with ascorbate (k = 2 x 108 M-1sec-1) and
with ,-carotene (k = 1.5 x 109 M-lsec-1) (72).
Packer has also confirned the rapid reaction of

CCl302" with the amino acids tryptophan and tyrosine
and also investigated the rates of reaction with the di-
peptide tryptophanyl-tyrosine and with the enzyme ly-
sozyme (73). In fact, Willson (68) has shown that
CCl302 will inactivate lysozyme more so than the OH'
radical that is actually a more powerful oxidizing agent.
This apparent paraJdox arises since CC1302' is suffi-
ciently reactive to damage thie enzyme but is more se-
lective than OH in its targets and does not react with
so many nonessential amino acid residues.
Another important aspect of the work of Packer and

Willson and their colleagues is the study of the peroxy
radicals derived from other halogenated aliphatic com-
pounds including CHC13, CH2CI2, CC13COOH,
CHCl2COOH, and CCIF2COOH (74). The electrophilic
reactivity of the peroxy radicals derived from these
compounds, when tested against reactants including as-
corbate, phenol, tyrosine, and promethazine, was found
to increase with increasing substitution of the chlorine
atoms. This finding was attributed to the inductive ef-
fect exerted by the halogen atoms. The electronegativ-
ity of the halogen atoms is therefore important in de-
termining not only the ease with which haloalkanes will
form free radicals but also in affecting their reactivity,
or the reactivity of the peroxy derivatives. In view of
the proposal that CC14-induced lipid peroxidation is due
to the production of the CC13 radical, it was clearly
necessary to use the pulse radiolysis technique to mea-
sure the reactivity of CC13' and CC1302' with polyun-
saturated fatty acids. Forni et al. (75) measured the
rate of reaction of CC1302' with oleic, linoleic, and ar-
achidonic acids. The CC1302' radical reacted rapidly
with these fatty acids: the rate was dependent on their

degree ofunsaturation and ranged from 1.7 x 1O' (oleic)
to 7.3 x 106 M-1sec7l (arachidonic). The reaction was
proposed to proceed via hydrogen atom abstraction re-
sulting in the formation of fatty acid radicals. Under
anaerobic conditions the rates of reaction due to CC13
were too slow for measurement by this technique (<i05
M-1sec'). These data promoted the revision of the pre-
vailing hypothesis: it now seems likely that the major
mechanism for the initiation of lipid peroxidation by
CC14 involves CC1302 rather than CC13' (76).

Clearly, CC1302' will react with a wide range of bi-
ological molecules at very rapid rates. It should be
stressed that CC13 is only relatively unreactive when
compared to CC1302'. While reactions of CC13' are too
slow to be detected by the pulse radiolysis technique,
they almost certainly do take place and surely contrib-
ute significantly to the overall metabolic perturbations
that occur.

In summary, the realization that CC13' reacts ex-
tremely rapidly with oxygen to form a highly reactive
electrophilic species can be seen as a major advance,
indeed, a watershed in the understanding of the dam-
aging reactions induced by CC14 in living cells. More-
over, the formation of reactive peroxy radicals must be
considered for other toxic haloalkanes.

Reactivity of Radicals Derived from
Halothane
The pulse radiolysis investigations with CC14 led to

similar studies with the anesthetic agent halothane (2-
bromo-2-chloro, 1,1,1-trifluoroethane) that very occa-
sionally produces an unexplained liver injury. It had
been suggested that free radical intermediates might
be involved in halothane toxicity (77). The predominant
route for radical formation from halothane is assumed
to be via bromide elimination:

CF3CHBrC1 'L- CF3CHCI + Br-

This halothane radical CF3 CHCl can be readily gen-
erated by pulse radiolysis and reacts rapidly with ox-
ygen to form CF3CHCO02-. As in the case of CC14, the
primary radical species was found to be much less re-
active than the peroxy radical derivative (78). The latter
species oxidized various substrates including ascorbate,
a-tocopherol, propyl gallate, and several phenothiazines
at rates in the range 108 to 109 M-1sec1l. No reaction
was detectable with CF3CHCl, however (k = <105 M-
lsec1). The oxidizing power of the CF3CHC102, radical
suggested it might be capable of initiating lipid perox-
idation if it were formed in liver cell membranes. Forni
et al. (75) measured the rate of reaction of CF3CHC02
with various fatty acids. As with CC1302', this radical
oxidized the fatty acids at rates proportional to their
degree of unsaturation. In general, however, the rate
constants for the reactions of CF3CHCO02' with po-
lyunsaturated fatty acids were about five times lower
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than those for the CC1302' radical. However, these data
alone cannot predict the potential of halothane to stim-
ulate lipid peroxidation: in vitro, CC14 is approximately
20 times more active than halothane in this respect (63).
As shown by De Groot and Noll (79), the oxygen

tension is a critical factor in determining whether or
not halothane will induce lipid peroxidation. The oxygen
partial pressure must be low enough to allow the for-
mation of halothane free radicals through the reductive
pathway, but must be sufficiently high to permit lipid
peroxidation.

Role of Cytochrome P-450 in the
Activation of CC14 and Other
Haloalkanes

CC14
As described earlier, it has been clear since the ac-

tivation aspects of CC14 toxicity were first studied that
the enzymes of the microsomal NADPH-cytochrome P-
450 electron transport chain are responsible for CC14
metabolism. It is an unfortunate paradox that these
enzymes, whose major function is to detoxify xenobiot-
ics, also make certain compounds, such as CC14, more
toxic.
The interaction of CC14 with the cytochrome P450

system was studied in depth by Slater and Sawyer
(63,80,81). In those studies, CC14-induced lipid peroxi-
dation (measured by the thiobarbituric acid reaction)
was taken as an index of CC14 metabolism. It was as-
sumed that the effects of inhibitors on CC14-induced
malonaldehyde (MDA) production represented under-
lying effects on CC14 activation; free radical scavengers
that inhibited lipid peroxidation were postulated to
scavenge CC13'. Our more recent work using other in-
dices of CC14 metabolism, together with other data that
have emerged since 1971, now shows that the situation
is even more complex than was first thought. Unfor-
tunately, all the practical indices of CC14 metabolism
are indirect; detection of CC13' directly by ESR spec-
trometry is not possible, and measurement of CC14 uti-
lization is not sensitive. Instead, we have several in-
direct methods: CC14-induced lipid peroxidation, the
covalent binding ofradiolabeled CC14 to microsomal ma-
cromolecules, and the spin trapping of CC13'. Of these
three, the measurement of covalent binding is probably
the best, being more direct than the lipid peroxidation
assay and more quantitative than spin trapping. Using
all three techniques gives an insight into the pathways
of CC14 metabolism.

Slater and Sawyer (80) compared CC14-induced MDA
production with typical mixed-function oxidase (MFO)
activity in terms of the effects produced by known in-
hibitors of the latter. Their conclusions were contro-
versial, suggesting that the main locus of CC14 activa-
tion was not at cytochrome P450 itself, but at some
point proximal to it, e.g., "near to, if not identical with

the NADPH flavoprotein." The results that pointed to
this conclusion were based on selective inhibition stud-
ies and included: p-chloromercuribenzoate (pCMB) in-
hibited drug metabolism but stimulated CC14-induced
MDA production; SKF 525A, at a concentration that
inhibited aminopyrine demethylation, had no significant
effect on CC14-induced lipid peroxidation, though a high
concentration did inhibit it; CO, a classical P-450 inhib-
itor, actually stimulated CC14-induced MDA production.
These compounds, along with a wide range of other

probe compounds, were re-investigated by our group
in a series of experiments that added covalent binding
and spin-trapping measurements to our methods of as-
sessing CC14 metabolism (41,82,83), and the results are
discussed below (Table 2).
The SH reagent pCMB is used at low concentrations

to block electron flow to cytochrome P-450 and can in-
hibit the flavoprotein (84) and also cause denaturation
of P-450 (85) at higher concentrations. It might be ex-
pected, therefore, that pCMB would inhibit normal drug
metabolism and all parameters of CC14 metabolism. In
fact, at 0.1 mM pCMB, CC14-induced MDA production
is strongly stimulated, confirming the results of Slater
and Sawyer (80); covalent binding of CC14 to protein is
moderately inhibited, while aminopyrine demethylation
is strongly reduced. At 0.2 mM pCMB, however, all
tested parameters are strongly inhibited. Spin trapping
of CC13 is unaffected by 0.1 mM pCMB in microsomes
but inhibited in hepatocytes. These results alone illus-
trate two important points: first, effects on CC14 me-
tabolism should not be assessed using one parameter of
this process, and second, using a single concentration
of a test compound may give misleading results, as em-
phasized previously (81).
A similar dissociation between two parameters of

CC14 metabolism is found with the surface active agent
sodium dodecyl sulfate (SDS). With SDS a concentra-
tion-dependent inhibition of covalent binding is coupled
with an increase in CC14-dependent lipid peroxidation
(maximum at 1 mM), until the microsomes are com-
pletely solubilized when both activities are abruptly
halted. Presumably, this reflects a gradual concentra-
tion-dependent breakdown of the membrane structure
that uncouples the electron transport chain and also
makes the membrane fatty acids more susceptible to
peroxidative attack.
Menadione also can be considered as an agent that

uncouples electron transport. With 100 ,uM menadione,
all parameters of CC14 metabolism and MFO activity
are strongly inhibited due to the diversion of electrons
from NADPH:cytochrome P-450 reductase. Menadione
cycles between its oxidized and semireduced forms, ox-
idizing NADPH and reducing oxygen to superoxide. At
1.0 ,uM, menadione is not an efficient electron-diverting
agent, as evidenced by its small effect on MFO activity
and on covalent binding of CC14. However, CC14-de-
pendent MDA production is very profoundly reduced
even by this low concentration. Cumene hydroperoxide-
induced lipid peroxidation is not affected by this con-
centration (83). Together, these data suggest that it is
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Table 2. Effects of inhibitors of cytochrome P450-mediated drug metabolism on CCI4-dependent lipid peroxidation, covalent binding
of CCI4 to protein, spin trapping of CCI; and aminopyrine demethylation in rat liver microsomes.'

% of control activity
Aminopyrine de-

Agent' mM CCl4-lipid peroxidation 14C-CCI4 binding Spin trappingc methylation
SKF 525A 0.02 46

0.10 84 120 100 (74) 36
0.50 38 195 -

Metyrapone 0.1 112 97 95 (96)
1.0 105 33 - 28
2.0 100 26

CO 74 71 75 (80) 57
Pyrazole 5.0 95 103 35
Menadione 0.001 15 87 100

0.1 0 14 20 (50) 15
pCMB 0.1 139 70 96 (75) 20

0.2 28 18 - 0
SDS 1.0 140 57

3.0 8 7
1,10-Ph 0.1 125 176 95

2.2 207 403
2,2'-BP 5.0 105 172 41
aData from the literature (4,82,83,94).
bAbbreviations: pCMB, p-chloromercuribenzoate; 1,10-Ph, 1,10-phenanthroline; 2,2'-BP, 2,2'-bipyridine.
'Values in parenthesis are those obtained in isolated hepatocytes.

the semiquinone form of menadione that is a powerful
antioxidant or that menadione is scavenging a radical
unique to the CC14-lipid peroxidation system, e.g.,
CC1302 -

SKF 525A, CO, and metyrapone are regarded as
"classical" inhibitors ofcytochrome P-450, and inhibition
of a compound's microsomal metabolism by these agents
is often taken as definitive proof that the compound is
a substrate for cytochrome P-450. In our studies, and
indeed in the hands of other workers, these inhibitors
have not provided unequivocal evidence that CCl4 is
activated at cytochrome P-450.

In agreement with our earlier findings (80,86) CC14-
induced production of MDA is found to be inhibited by
SKF 525A ifhigh concentrations are used in microsomal
suspensions (83) an&-in hepatocytes (87); this effect re-
quires a higher concentration than is needed to inhibit
MFO activity, however. The spin-trapping of CC13' in
microsomes was not changed by 0.1 mM SKF 525A in
microsomes, but some inhibition was seen in hepato-
cytes. The most striking effect of SKF 525A was to
enhance strongly the covalent binding of CC14 to native
microsomes. These results were obtained in the same
3amples as those where an inhibition of lipid peroxi-
lation was found and illustrate again the apparent dis-
3ociation between these events. The enhancement of
!ovalent binding found by us does not clarify the con-
lused situation already present in the literature where
'eports ofno effect (88), weak inhibition (27), and strong
nhibition (89) are to be found. Interestingly, Sipes et
1. reported a similar enhancement of binding of CBrCl3
which is also activated to CC13' (88). Also, metabolism
)f CC14 to CHCl3 is reported to be stimulated by SKF
25 (27). As regards other pathways of CC14 metabo-
ism, SKF 525A has been reported to inhibit weakly the

conversion of CC14 to COC12 (20) and to electrophilic
chlorine (90). Metabolism to CO2 is reported to be in-
hibited strongly (18) or not at all (19). In none of these
studies were the experimental conditions the same; var-
iations in species, strain, and pretreatment of the ani-
mals and in the concentrations of oxygen and SKF 525A
in the incubation medium preclude any meaningful com-
parisons. Moreover, in most of the studies just cited
there were no dose response effects studied under sim-
ilar conditions in relation to the inhibitory action ofSKF
525A on the MFO system; in some of the studies only
a single concentration of SKF 525A was used with the
CC14 system, a procedure that is attended by risks to
correct interpretation.

Inhibition with CO provides almost definite evidence
for cytochrome P-450 involvement in a given microsomal
metabolism reaction. In our studies the effects of CO
on the microsomal metabolism of CC14 have not been
sufficiently strong to be convincing. The small enhance-
ment of CCl4-induced microsomal lipid peroxidation re-
ported by Slater and -Sawyer (80) and reproduced in
hepatocytes (87) was not confirmed in later experiments
(82) where a weak inhibitory effect was generally found.
Other workers also have been unable to demonstrate
inhibition of this parameter by CO (91,92). Similarly,
we have found covalent binding in microsomes and spin
trapping of CC13 in both microsomes and hepatocytes
to be inhibited rather weakly by CO. However, other
groups have found strong effects ofCO on covalent bind-
ing of CC14 (27,88), on CHC13 production (27,92), on
COC12 formation (20), and on conversion to electrophilic
chlorine (90). Noguchi et al. (93) found that spin trap-
ping of CC13 was completely inhibited by CO in a re-
constituted P450 system but not in native microsomes.
Again, the various different experimental conditions
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used by these groups make direct comparison difficult
but the inhibition of P-450-mediated reactions by CO is
so fundamental that it should overcome these consid-
erations. In the cases of COC12 and electrophilic chlor-
ine, these products are again rather far removed from
the activation event. The possibility that cytochrome P-
450 is functioning to catalyze only later steps in this
pathway must be considered. It is also worth bearing
in mind the technical problems ofensuring that bubbling
with CO sufficiently long enough to inhibit cytochrome
P-450 does not eliminate significant amounts of CC14 or
completely remove 02 necessary for peroxidation
events. In such experiments careful control of the CC14
and 02 levels in the gassed suspension are therefore
essential.
The third of the "classical" cytochrome P-450 inhibi-

tors used here is metyrapone. No effects were observed
on any of the indices of CC14 metabolism when metyr-
apone was added at 100 ,uM final concentration, a con-
centration that strongly depresses MFO activity. At 1-
2 mM, covalent binding was strongly inhibited, in agree-
ment with the result of Uehleke et al. (27), but CC14-
dependent lipid peroxidation in the same experimental
samples is not affected. Other type II ligands have also
been tested (82,83) but no consistent effect is found.
Covalent binding of CC14 in microsomes was inhibited
by pyridine and its derivatives metyrapone and 2,3'-
bipyridine, but not by imidazole, pyrazole, or 3-ami-
notriazole. CC14-dependent MDA production in micro-
somes was inhibited by pyridine, 2,3'-bipyridine, and
2,4'-bipyridine but not by metyrapone, imidazole, pyr-
azole, or 3-aminotriazole. All of these agents inhibited
MFO activity.
Other pyridine analogs provided especially interest-

ing data. These compounds, 2,2'-bipyridine and 1,10-
phenanthroline, were originally tested with other
metal-chelating agents in order to examine the role of
iron in CC14-stimulated MDA production. It was sur-
prising to find that 1,10-phenanthroline and, in some
circumstances, 2,2'-bipyridine actually enhanced CC14-
dependent lipid peroxidation. Further investigation re-
vealed that the covalent binding of CC14 to microsomal
protein was also enhanced; in fact, even more so (94).
For example, 2.2 mM 1,10-phenanthroline doubled the
rate of CC14-induced MDA production and increased the
covalent binding of CC14 fourfold. This strong enhancing
property is restricted among chelating agents to two
compounds of similar structure suggesting that unspe-
cific metal chelation per se is not involved. In fact, this
effect is remarkably similar to the enhancement of mi-
crosomal aniline hydroxylation by these same com-
pounds (95). However, in neither system is the mech-
anism of this unusual effect immediately apparent.

Considering these results with MFO-inhibitors to-
gether, several points can be made. It must be noted
that various agents have differential effects on different
parameters of CC14 metabolism. Hence, misleading re-
sults can be obtained if only one parameter is studied.
Even taking covalent binding of CC14 as the best index
of CC14 metabolism used here, the correlation with "typ-

ical" MFO activity is not good. However, divergent ef-
fects of certain inhibitors on different, verified MFO
reactions are known. Moreover, CC14 metabolism is ob-
viously not a typical MFO reaction, and it may therefore
be inappropriate to expect it to respond in the same
way to inhibitory compounds. Many of the results sug-
gest that the pathways of CC14 metabolism leading
either to covalent binding or lipid peroxidation are in-
dependent. One reason for this may be that CC13 and
CC1302 are responsible for covalent binding and lipid
peroxidation, respectively. It cannot be discounted that
more than one locus of CC14 activation exists, but it may
be that an artificial locus is created by the addition of
certain compounds creating an artefactual electron flow
(76).
The studies with specific MFO inhibitors have pro-

vided equivocal results concerning the precise locus of
CC14 activation along the microsomal electron transport
chain. However, other studies have provided reasona-
bly strong evidence that cytochrome P-450 is the acti-
vation site.
Using CoC12 (96), allylisopropylacetamide (88), and

cobalt protoporphyrin (97) to deplete cytochrome P-450
in vivo resulted in the decreased metabolism of CC14 in
vitro. In the latter study, the use of cobalt protopor-
phyrin was inconclusive as NADPH:cytochrome P-450
reductase activity was also strongly reduced.
The use ofreconstituted systems containing the MFO

system enzymes has strongly implicated cytochrome P-
450 as the site of CC14 activation; in such artificial sys-
tems these systems apparently did not metabolize CC14
in the absence of the hemoprotein (23,90,92,93,98). In-
terestingly, CC14 metabolism may be more rapid with
certain isozymes of cytochrome P-450 than with others.
Noguchi et al. (93) reported that the phenobarbitone-
inducible form is the most active; Ingelman-Sundberg
and colleagues (99) have reported the superior activity
of the form induced by ethanol, benzene, or imidazole.
Frank et al. (100) have found that most of the covalent
binding of CC14 to microsomal protein is to cytochrome
P-450 molecules. Various groups, including ourselves,
have shown that such covalent binding may contribute
directly to the destruction of this enzyme by CC14 (101-
103).

If the role of cytochrome P-450 in CC14 activation now
seems more acceptable the results obtained with so-
called inhibitors of this enzyme require explanation, es-
pecially those showing differential effects on various
indices of CC14 metabolism. Future studies will need to
consider simultaneous measurement of all possible path-
ways of CC14 metabolism and must take into account
the presence of certain cytochrome P-450 isozymes re-
sponding differently to CC14 and to the inhibitory com-
pounds.

Other Haloalkanes
The involvement of our own group in investigating

the role of cytochrome P-450 in the activation to free
radicals of haloalkanes other than CC14 has so far been
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Table 3. Effect of inhibitors of cytochrome P450-mediated drug
metabolism on the activation of various haloalkanes in isolated
hepatocytes as measured by spin-trapping of their respective

radical derivatives.a

% of control value
Agent CC14 Halothane DBE CHCl3
Menadione 50
pCMB 75 82
SKF 525A 74 100 76 81
Metyrapone 96 90 88 90
CO 80 10 0 5

aAll compounds tested at a final concentration of 0.1mM (except
for carbon monoxide for which there was a 60 sec exposure). Data
from the literature (41,55,64).

limited to spin-trapping experiments in isolated hepa-
tocytes. The other haloalkanes tested in this system are
halothane, dibromoethane and chloroform (Table 3).
As with the case of CC14 so with halothane: the "clas-

sical" inhibitors of cytochrome P-450 did not provide
unequivocal evidence for the role of this enzyme in re-
ductive activation of halothane. SKF 525A and metyr-
apone failed to influence the formation of the halothane
radical-derived ESR signal when used at 0.1 mM; high
concentrations are not advisable in isolated hepatocytes
as the cell viability is affected. At millimolar concen-
trations these compounds will inhibit anaerobic dehal-
ogenation of halothane in subcellular fractions (104). On
the other hand, CO strongly inhibited halothane radical
formation, in contrast to its effects on CC14 metabolism.
Indirect evidence for involvement of cytochrome P-450
is the greater activity in liver cells from male rats rather
than females and the requirement for prior treatment
with phenobarbitone.

In the case of dibromoethane (DBE) radical-adduct
formation is inhibited by all three of the cytochrome P-
450 inhibitors studied here. At 0.1 mM, SKF 525A and
metyrapone are moderately effective (Table 3) and at
0.5 mM markedly so (55). CO is remarkably effective,
almost completely suppressing the DBE radical-adduct
signal, thereby demonstrating a very strong depen-
dence on P-450, and emphasizing again the unusual na-
ture of the corresponding results found with CC14.

Chloroform is metabolised aerobically to COC12, an
oxygenase reaction that is known to be catalyzed by
cytochrome P-450. The reductive pathway yielding the
CHC12 radical is also apparently dependent on this en-
zyme, as the CO again strongly reduced the radical-
adduct signal. SKF 525A and metyrapone were again
not sufficiently effective to be convincing. Probably the
use of these two compounds at this level in isolated
hepatocytes is unsuitable for the evaluation of the role
of cytochrome P-450 in haloalkane metabolism.

Scavenging of Free Radicals
Derived from CC14
The system of CCl4-induced lipid peroxidation in rat

liver microsomes was characterized in detail by Slater

and Sawyer, and in that study the effects of several free
radical scavengers were investigated (81). Prometha-
zine and propyl gallate were especially effective inhib-
itors of this system and it was postulated that they act
by scavenging the CC13 radical that was presumed to
be the initiator of lipid peroxidation. Our more recent
investigations lead us to revise this hypothesis.

Promethazine, propyl gallate, catechin, and a range
of other antioxidant compounds were tested in similar
microsomal systems to those used originally (63) and
the covalent binding of CC14 to microsomal protein was
assayed simultaneously with CCl4-dependent MDA pro-
duction (82,83). Also, several such free-radical scav-
engers were tested for their effects on the spin-trapping
of the CC13 radical in microsomes and isolated hepa-
tocytes (41).

In the covalent binding/lipid peroxidation experi-
ments it was a general finding that CCl4-induced lipid
peroxidation was readily inhibited with free-radical
scavengers, whereas the covalent binding of CCl3 to
protein was not (Table 4). For example, 10 ,uM pro-
methazine reduces CCl4-induced MDA production to
13% of the control value whereas covalent binding re-
mains at 84% of the control value. In the spin-trapping
experiments, free-radical scavengers such as prometh-
azine, propyl gallate, and catechin were all found to be
ineffective in scavenging CC13 . Of course, in the latter
experiments a competing scavenger, the spin trap itself,
is present at much higher concentrations. These results
are strongly suggestive that in inhibiting lipid peroxi-
dation induced by CC14, these compounds are acting by
scavenging radicals other than CC13'. They may be scav-
enging the propagating radicals of the peroxidation
chain reaction. If they are also scavenging the initiating
radical, then this radical is not identical to the inter-
mediate that binds to protein.
Strong support is lent to this interpretation by the

pulse radiolysis data on the reactivity of CC1302, as
discussed previously. Promethazine and other antioxi-
dants react relatively slowly with CC13 but very rapidly
with CC1302 which is produced from CC13 at near dif-
fusion-controlled rates in aerobic conditions (see ear-
lier). Moreover, CC1302' reacts more rapidly than does
CC13 with polyunsaturated fatty acids. It can be pos-
tulated, therefore, that the CC1302 radical has the dom-
inant role in inducing CCl4-dependent lipid peroxida-
tion. On the other hand CC13 would be more likely to
produce stable, covalently bound products. It should be
emphasized that CC13' may also play a minor role in
inducing lipid peroxidation directly and that some cov-
alently-bound products may be due to derivatives of the
CC1302 radical, e.g., CC130 or COC12 (see Fig. 1) and
(76).

In inhibiting CCl4-dependent lipid peroxidation,
therefore, free-radical scavengers like promethazine
may act in part by reacting with CC1302, a reaction
that is demonstrably rapid. That this is not their sole
mechanism of action is indicated by their general an-
tioxidant nature in other lipid peroxidation systems,
suggesting that they scavenge lipid peroxy and alkoxy
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Table 4. Effects of free-radical scavengers on CCl4-induced lipid peroxidation, covalent binding of CCI4 to protein, spin-trapping of
CCI3 and aminopyrine demethylation on rat liver microsomes and (in parentheses) in rat hepatocytes.a

% of control activity
Aminopyrine de-

Agent p.M CCl4-lipid peroxidation CC14 binding CClI spin trapping methylase
Promethazine 1.0 38 83 100

10.0 13 (0) 84 79
100.0 3 66 100 (86) 40

Propyl gallate 10.0 17 (42) 87
20.0 13 88
50.0 10 (21) 74 74
100.0 100 (93)

Catechin 20.0 49 94 113
50.0 30 94

100.0 0 (0) 100 (100)
aData from the literature (41,81,83,87,109).

radicals common to all such systems. In general, though,
the CC14-dependent system is more susceptible to the
inhibitory effects of these compounds (105). At high
concentrations, the direct effects of these compounds
on the electron transport chain must be considered,
either competing for electrons at the reductase locus or
binding to the'substrate site at the terminal cytochrome.
Propyl gallate, for example, inhibits drug metabolism
at high concentrations (106) which probably explains the
strong inhibition of the covalent binding of CC14 to mi-
crosomal protein obtained by Uehleke et al. (27) when
using 1 mM of this scavenger. The inhibition of the
microsomal metabolism of CC14 to CO2 by promethazine
(18) is of renewed interest, considering the probability
that CC1302' is probably an intermediate in this path-
way.
The effects of the scavengers promethazine, propyl

gallate, and catechin have been confirmed in hepato-
cytes: CC14-induced lipid peroxidation is inhibited, co-
valent binding of CC13' to protein is not (87,107). This
property of such scavengers can be used to probe the
respective roles of covalent binding and lipid peroxi-
dation in various aspects of cell damage caused by CC14.
In this way we have shown that CC14-induced destruc-
tion of cytochrome P-450 in liver microsomes and in
isolated hepatocytes is probably caused by a combina-
tion of direct binding of CC13 to the hemoprotein and
peroxidation of the surrounding membrane lipid (102).
The CC14-induced inactivation of glucose-6-phospha-
tase, on the other hand, is due in most part to lipid
peroxidation (102).

This approach was utilized also by Dianzani, Poli, and
colleagues (106) using promethazine and propyl gallate
to dissociate the effects of covalent binding from those
of lipid peroxidation in CC14-induced blockage of lipo-
protein secretion in isolated hepatocytes. It was con-
cluded that covalent binding was the major contributor
to this derangement.
While such experiments attempt to model the situa-

tion in vivo, the results may not be directly applicable:
propyl gallate and promethazine are both effective
against some aspects of CC14 hepatotoxicity, but cate-

chin is not (34,108,109). In the whole animal there exists
the problem of getting the scavenger to the "right place,
at the right time and in the right concentration" (110).
In addition, protective effects may be due not to scav-
enging action but to other effects on the organism. Pro-
methazine, for example, when administered to rats, is
found to have a synergistic effect with CC14 in increasing
the breathing rate and decreasing the body tempera-
ture, and also delays the absorption of CC14 from the
gastro-intestinal tract by approximately 2 hr (111,112).
Thus, promethazine affords protection against some pa-
rameters of CC14 hepatotoxicity when measured 3 hr
after dosing, partly because a smaller fraction of the
CC14 dose has reached the liver at this time (112).

Concluding Remarks
In this short review we have summarized a number

ofthe main contributions that have increased our knowl-
edge of the metabolic activation of halogenated alkanes
in general and CC14 in particular. There is no doubt in
our minds that studies on the hepatotoxicity of CC14
have provided an unexpectedly, and probably uniquely
large number of new concepts that relate to biochemical
mechanisms of tissue injury. Nonetheless, many im-
portant problems concerning the toxicity of CC14 remain
to be solved, particularly in the time band following
metabolic activation, and when the network of cellular
perturbations is expanding rapidly.
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